K.P.K, PUBLIC SERVICE COMMISSION, PESHAWAR

COMPETATIVE EXAMINATION FOR PROVINCIAL MANAGEMENT SERVICE, 2010

APPLIED MATHEMATICS, PAPER-II

TIME: 3 hours Max Marks: 100

Note: Attempt only FIVE questions, selecting at least ONE question from each section.

Each part carries 10 marks.

SECTION A

Q.1 Solve any two of the following differential equations.

(i)
$$\frac{x+y-a}{x+y-b} \frac{dy}{dx} = \frac{x+y+a}{x+y+b}$$

(ii)
$$x. Sin\left(\frac{y}{x}\right) dy = \left\{y. Sin\left(\frac{y}{x}\right) - x\right\} dx$$

(iii)
$$(1 + y^2)dy = (Tan^{-1}y - x)dx$$

- Q.2 (a) Under certain conditions, cane sugar is converted into dextrose at a rate which is proportional to the amount unconverted at any time. If out of 75 grams of sugar at t=0, 8 grams are converted during the first 3 minutes. Find the amount converted in 90 minutes.
 - (b) Apply the method of variation of parameters to solve

$$\frac{d^2y}{dx^2} + y = \tan x$$

Q.3 (a) Solve the following partial differential equation.

$$y^2p - xyq = x(z - 2y)$$
 where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$

(b) The variation of an elastic string is governed by the P.D.E. $\frac{\partial^2 U}{\partial t^2} = \frac{\partial^2 U}{\partial x^2}$. The length of the string is π and the ends are fixed. The initial velocity is zero and the initial deflection is U(x,0) = 2(Sinx + Sin3x). Find the deflection u(x,t) of the vibrating string for t>0.

SECTION B

- Q.4 (a) A covariant tensor has components xy, $2y z^2$, xz in rectangular coordinates. Find its covariant components in spherical coordinates.
 - (b) If $(ds)^2 = r^2(d\theta)^2 + r^2 Sin^2 \theta (d\phi)^2$. Find the value of [22,1].
- Q.5 (a) If A^{ij} are the cofactors of a^{ij} in a determinant Δ of order 3,then show that $a^{ij}A^{kj}=\Delta\delta^k_i$
 - (b) Prove any two of the following.
 - (i) $curl(grad\varphi) = 0$
 - (ii) $grad(div \vec{f}) = curl(curl \vec{f}) + \nabla^2 \vec{f}$
 - (iii) $div(\vec{f} \times \vec{g}) = \vec{g}.curl\vec{f} \vec{f}.curl\vec{g}$

SECTION C

- Q.6 (a) Starting with $x_0 = 3$. Use Newton Raphson method to find a root of $x^3 3x 5 = 0$, correct to 3 decimal places.
 - (b) Find by the method of Regula falsi a root of the equation. $x^3 + x^2 3x 3 = 0$, lying between 1 and 2.
- Q.7 (a) Use the method of iteration to solve the equation $x = e^{-x}$ starting with x = 1Perform 4 iterations up to 4 decimal places.
 - (b) Evaluate $\int_0^{\frac{\pi}{3}} \sqrt{1 \frac{1}{3} Sin^2 \theta} \ d\theta$, using Simpsons rule with 6 intervals, correct to 3 decimal places.
- Q.8 (a) Solve the following system of equations by Jacobi's method.

$$4x + y + 3z = 17$$

 $x + 5y + z = 14$
 $2x - y + 8z = 12$

(b) Solve the following system of equations by using Gauss-Seidel method.

$$2x - y + 2z = 3$$
$$x + 3y + 3z = -1$$
$$x + 2y + 5z = 1$$